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Abstract

Transient buoyant convection in a square enclosure of a non-Newtonian fluid is studied. A simple power-law fluid

model, with the power-law index n and the consistency coefficient K, is adopted. Flow is initiated from the motionless

isothermal initial state by abruptly raising the temperature at one vertical sidewall and lowering the temperature at the

opposite vertical sidewall. The appropriately defined overall Rayleigh number Ra is large to render a boundary layer-

type flow. A scale analysis is performed to gain a rudimentary understanding of the evolution process. Principal force

balances are considered in each of the transient stages. Comprehensive numerical solutions are acquired to the gov-

erning equations. The transient flow and thermal characteristics, both in the boundary layers and in the interior, are

portrayed. The effects of Ra and of n on the behavior of the Nusselt number are delineated. The system-wide heat

transport at the steady state is calculated. Based on the numerical results, the Nusselt number correlations are proposed.

The numerical solutions are in broad qualitative agreement with the descriptions obtainable from the scale analysis.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Transient buoyant convection in an enclosed space,

under various thermal and mechanical forcings, has

been extensively studied [1]. The convective flow and

heat transfer characteristics pertinent to the geometrical

and dynamical constraints have been documented. For

most applications, the overall Rayleigh number is large,

and rectangular cavities of aspect ratio O(1) have been

dealt with. One prominent flow layout is due to Patter-

son and Imberger [2], which is hereafter referred to as P

& I. This model delineated the transient evolution from

the motionless isothermal initial state to the final state.

The flow is initiated by abruptly raising the temperature

at one vertical sidewall and simultaneously lowering the

temperature at the opposite vertical sidewall. Several
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relevant time scales and the evolution scenarios, together

with the characterization of transient heat transport,

have been brought forth.

It is emphasized that the majority of existing studies

have been concerned with the Newtonian fluids. Despite

the obvious relevance to industrial applications, little

has been reported on buoyant convection involving

non-Newtonian fluids. The free convection of a non-

Newtonian fluid over a heated plate and a cylindrical

enclosure has received some attention [3–11]. The

methodologies encompassed analytical [3], numerical [4]

and experimental [5] techniques, and the results estab-

lished that the free convection features are substan-

tially affected by the rheological properties of the fluid.

However, the crucial issue of the time-dependent buoy-

ant convective process in an enclosure of a non-

Newtonian fluid has remained largely unexplored. For

the steady convection of an enclosed non-Newtonian

fluid, the prior works addressed the problem of buoyant

convection in a porous cavity [12–14]. The purpose of

the present paper is to portray the principal aspects of
erved.
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Nomenclature

Ar cavity aspect ratio, H/L

Nu overall Nusselt number, Eq. (25)

g gravitational acceleration

H height of the cavity

K consistency coefficient, Eq. (6)

L width of the cavity

n power-law index, Eq. (6)

p, P dimensional and non-dimensional pressure

Pr system-wide Prandtl number, Eq. (10a)

Ra system-wide Rayleigh number, Eq. (10b)

T dimensional temperature

t dimensional time

tB formation time scale of the vertical bound-

ary layer, Eq. (11a)

tC heat-up or convective time scale, Eq. (17)

tD diffusion time scale, Eq. (19)

tG period of internal gravity oscillation, Eq.

(18)

tH arrival time scale of viscous intrusion at

opposite wall, Eq. (15)

u, v dimensional velocity components in the x
and y directions

x, y dimensional horizontal and vertical coordi-

nates

U , V dimensionless velocity components in the X
and Y directions

X , Y dimensionless horizontal and vertical coor-

dinates

vV velocity scale of vertical boundary layer,

Eq. (11b)

vH velocity scale of viscous horizontal intrusion

layer, Eq. (16)

Greek symbols

b isobaric coefficient of volumetric thermal

expansion

dH thickness of horizontal viscous intrusion

layer, Eq. (14)

dV thickness of outer viscous layer, Eq. (11d)

dT thickness of vertical thermal boundary

layer, Eq. (11c)

j thermal diffusivity

l dynamic viscosity

h non-dimensional temperature

s non-dimensional time

Ds time increment for numerical computations

DT temperature difference between vertical

sidewalls

w non-dimensional stream function

Subscripts

0 reference condition at T ¼ T0
C cold sidewall

H hot sidewall

ss steady state

a apparent viscosity

Superscript

� dimensionless viscosity

H
TH = T0+ T/2

u = v = 0, T = T0

at t = 0

g

u = v = 0u = v = 0

insulated u = v = 0

TC= T0 – T/2∆ ∆
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the transient process of a non-Newtonian clear fluid in

the flow configuration of P & I.

In order to gain basic physical understandings, the

non-Newtonian fluid considered in this study is assumed

to follow the well-known power-law model [3–10]. An

order-of-magnitude analysis is carried out to depict the

transient stages. The bulk of the present effort is directed

to obtaining comprehensive and detailed numerical so-

lutions. Emphasis is given to the specific influences of

the rheological properties of the fluid. The flow and heat

transfer characteristics at the final state will also be

scrutinized, and comparisons with those of a Newtonian

fluid will be made.
L

insulated u = v = 0

Fig. 1. Schematics of flow configuration.
2. Mathematical formulation

Consider a two-dimensional closed rectangular cavity

of length L and height H , which is filled with an in-
compressible non-Newtonian fluid. As displayed in

Fig. 1, the fluid is initially isothermal (temperature T0)
and at rest. The top and bottom horizontal endwalls

are thermally insulated. At time t ¼ 0, the left- and



0
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right-sidewalls are instantaneously cooled and heated

respectively to temperatures T0 � DT=2 and T0 þ DT=2,
and these thermal boundary conditions are maintained

thereafter. The subsequent fluid motion is governed by

the time-dependent Cauchy equations. With the invo-

cation of the Boussinesq-fluid approximation, i.e.,

q ¼ q0½1� bðT� T0Þ�, these are [3,6,10]
ou
ox

þ ov
oy

¼ 0; ð1Þ

ou
ot

þ u
ou
ox

þ v
ou
oy

¼ � 1

q0

op
ox

þ 1

q0

osxx
ox

�
þ osxy

oy

�
; ð2Þ
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ot

þ u
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ox

þ v
ov
oy
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oy

þ 1

q0

osxy
ox

�
þ osyy

oy

�
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oT
ot

þ u
oT
ox

þ v
oT
oy

¼ j
o2T
ox2

�
þ o2T

oy2

�
: ð4Þ

In the above, (u; v) represent the velocity components in
the horizontal (x) and vertical (y) directions; t the time; T
the temperature; p the pressure; g the gravitational ac-

celeration; and q, b, and j the density, coefficient of

thermometric expansion, and thermal diffusivity of the

fluid at temperature T0.
The associated initial and boundary conditions are

u ¼ v ¼ 0; T ¼ T0 t < 0; ð5Þ

u ¼ v ¼ 0 at x ¼ 0; L; and y ¼ 0;H ;

oT
oy

¼ 0 at y ¼ 0;H ;

T ¼ T0 	 DT=2 at x ¼ 0; L; t > 0:

The essential part of the formulation is to adopt a

suitable constitutive equation, which relates the indi-

vidual components of the stress tensor to the relevant

kinematic variables. For this purpose, a purely-viscous

non-Newtonian fluid is considered, which follows the

Ostwald–De Waele power-law [3–10]:

sij ¼ 2laDij ¼ 2Kð2DklDklÞðn�1Þ=2Dij: ð6Þ

The above representation involves two material param-

eters, i.e., K, the consistency coefficient; and n, the

power-law index, and Dij indicates the rate-of-defor-

mation tensor. Obviously, the usual Newtonian fluid

corresponds to the case n ¼ 1 with the coefficient of

viscosity K; whereas the case n > 1 describes the dilatant

(or shear-thickening) behavior, and n < 1 denotes the

pseudoplastic (or shear-thinning) behavior of a non-

Newtonian fluid.

Here, the limitation of the power-law model in Eq.

(6) is briefly stated. As is generally known, this model for

pseudoplastic fluids predicts an infinite viscosity at the

limit of zero shear rate, whereas the viscosity of all real
non-Newtonian fluids exhibits a Newtonian behavior at

low shear rates. In the present problem, this situation

would occur in the enclosure, especially, at the beginning

of the transient period motionless state. To eliminate the

singularity associated with the infinite viscosity in the

numerical computations, various values of a zero shear-

rate viscosity in the numerical computations were tested,

and these effects on the major transient phenomena were

negligible. The pseudoplastic fluids have generally a high

viscosity, and the variation in the viscosity due to tem-

perature change has also a direct impact on the thermal

and flow fields. However, when the variation in the

temperature is not large, the variation in the viscosity is

also small. In the present set-up, the dependency of K on

temperature is not considered; a small temperature

difference DT is assumed. For detailed rheological as-

pects, the reader is referred to the more specialized

treatments.

For the two-dimensional Cartesian coordinates, Dij

in Eq. (6) simplifies to

Dij ¼
1

2

oui
oxj

�
þ ouj

oxi

�
: ð7Þ

From Eqs. (6) and (7), the apparent viscosity la is de-

rived:

la ¼ K 2
ou
ox

� �2
"(

þ ov
oy

� �2
#
þ ov

ox

�
þ ou

oy

�2
)ðn�1Þ=2

:

ð8Þ

Clearly, for a Newtonian fluid (n ¼ 1), la [¼K] reduces
to the conventional viscosity. However, for a non-

Newtonian fluid, la shows more complex dependence on

the fluid property and flow variables. Therefore, there

arises a need to introduce and utilize a physical quantity

with the dimension of (length)2(time)�1, which would

play a role analogous to the kinematic viscosity of a

Newtonian fluid. The introduction of such a quantity for

a non-Newtonian fluid will facilitate the interpretation

of the flow features, in parallel with the concepts and

tools that are effective for a Newtonian fluid. Also, by

using such a quantity, consistent definitions of the di-

mensionless parameters, which are characteristic of the

system-wide global heat transports, can be achieved. In

the literature, searches for the proper combinations of

flow variables have been made, both for a free convec-

tion about a flat plate [3–10] and for a porous cavity

[12–14]. Based on the physical rationalizations and trial-

and-error efforts, a grouping, which consists of the

consistency coefficient K, the power-law index n, the
fluid density q0 and the cavity height H , emerges to be

appropriate [5];

m0 � K
q

� �1=ð2�nÞ

H 2ð1�nÞ=ð2�nÞ: ð9Þ
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Note that the role of m0, of which the dimension is m2 s�1,

is analogous to that of the kinematic viscosity of a

Newtonian fluid. By using m0, the Prandtl (Pr) and

Rayleigh (Ra) numbers are defined

Pr � ðK=q0Þ
1=ð2�nÞH 2ð1�nÞ=ð2�nÞ

j
ð10aÞ

and

Ra � gbDTH 3

jðK=q0Þ
1=ð2�nÞH 2ð1�nÞ=ð2�nÞ

: ð10bÞ

The use of the above-mentioned m0 was proposed and

refined in the preceding numerical and experimental

endeavors [5,6,10].
3. Scale analysis

In line with the undertaking of P & I, a scale analysis

is carried out to acquire a rudimentary picture.

3.1. Growth of the vertical thermal boundary layers

Immediately after the impulsive imposition of the

differential heating at the sidewalls, the scales for time,

velocity and length for the growth of the vertical thermal

boundary layer, under the assumption of viscous-

buoyancy force balance, are, respectively:

tB � H 2

j
ðRaPrn�1Þ�2=ð3nþ1Þ; ð11aÞ

vV � j
H
ðRaPrn�1Þ2=ð3nþ1Þ; ð11bÞ

dT � HðRaPrn�1Þ�1=ð3nþ1Þ: ð11cÞ

The thickness of the outer viscous layer is scaled as

dV � H Pr2�n=ðnþ1ÞðRaPrn�1Þ2ð2�nÞ=ðnþ1Þð3nþ1Þ: ð11dÞ

It is noted that, for the assumption of a thin boundary

layer (dV  H ) to be valid,

Ra > Prðnþ3Þ=2; ð12aÞ

and, also, for the above-described force balance to be

applicable, one has

Ra7 Prð5�nÞ=3ð1�nÞ for n7 1: ð12bÞ

The apparent viscosity la of Eq. (8) is non-dimension-

alized by employing m0:

m�a �
la

q0m0
: ð13aÞ

The magnitude of m�a in the boundary layer can be esti-

mated, from Eqs. (8)–(11):
m�a � ðRaPr�4=3Þ3ðn�1Þ=ð3nþ1Þ: ð13bÞ
3.2. Passage of the horizontal viscous intrusion layer

After the establishment of the thermal boundary

layer on the vertical sidewall, the horizontal intrusion

layer begins to form and moves toward the opposite

sidewall on the top and bottom horizontal endwalls. At

the time instant t, if the thickness of this layer is d, then
the velocity scale is u � vVdT=d. The horizontal intrusion
layer is driven by the buoyancy-induced horizontal

pressure gradient of OðgbDTd=utÞ, which can be de-

duced Eq. (3). The intrusion layer grows up to a thick-

ness OðdHÞ over the time to reach the opposite wall

t � L=u. The viscous-pressure balance, from Eq. (2),

gives:

dH � HðRaPrn�1Þ�ð2nþ1Þ=2ðnþ1Þð3nþ1ÞAr�1=2ðnþ1Þ; ð14Þ

tH � H 2

j
ðRaPrn�1Þ�ð4nþ3Þ=2ðnþ1Þð3nþ1ÞAr�ð2nþ3Þ=2ðnþ1Þ; ð15Þ

and

vH � k
H
ðRaPrn�1Þð4nþ3Þ=2ðnþ1Þð3nþ1ÞAr1=2ðnþ1Þ: ð16Þ
3.3. Approach to the steady state (stratification of the

interior core)

As succinctly portrayed in P & I, after the arrival of

the horizontal intrusion at the opposite sidewall, the

interior core is filled with heated (cooled) fluids by

horizontal layering. This filling occurs over tC until when
all the fluids pass through the vertical thermal boundary

layers,

tC � H 2

j
ðRaPrn�1Þ�1=ð3nþ1ÞAr�1: ð17Þ

It was shown in P & I that, for a Newtonian fluid, in the

convection-dominant flow regime, the size of the diffu-

sion time scale tD � H 2=m, relative to tC, determines the
existence of decaying wave motions; for tC < tD, the
approach to the steady state is characterized by decaying

internal gravity oscillations; whereas if tC > tD, the ap-
proach is monotonic [2]. The period of the system-scale

internal gravity waves is expressed as [15]:

tG ¼ 2p
ð1þ Ar2Þ1=2

SiN
¼ H 2

j
2p
Si

1þ Ar2

RaPr

� �1=2

; ð18Þ

where N � ðgbDT=HÞ1=2 � j=H 2ðRaPrÞ1=2 is the Brunt-
V€aais€aal€aa frequency and Si denotes the interior stratifica-
tion factor (oh=oY Þ1=2. To estimate the time scale of tD
for a non-Newtonian fluid, the known values of the

apparent viscosity (ma) in the vertical thermal boundary
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layer can be utilized. Accordingly, on this basis, the

diffusive time for a non-Newtonian fluid is gauged

tD � H 2

j
ðRaPrn�1Þ3�3n=ð3nþ1ÞPrn�2: ð19Þ

Therefore, the criterion for the presence of transient

internal waves can be stated

Ra > Prð6�2nÞ=ð4�3nÞArð3nþ1Þ=ð3n�4Þ for n < 1:0: ð20Þ

It is implicit in the description of the generation of wave

motions that the horizontal intrusion layer transports

the heat energy by convection without a significant heat

loss to the core by vertical conduction [16]. This is valid

if tH < d2H=j, or, from Eqs. (14) and (15),

Ra > Pr1�nAr�ð2nþ1Þð3nþ1Þ: ð21Þ
Consequently, for n < 1 and Ar6 1:0, the criterion for the
presence of internal wave activity may be expressed as

Ra > Max Prð6�2nÞ=ð4�3nÞArð3nþ1Þ=ð3n�4Þ; Pr1�nAr�ð2nþ1Þð3nþ1Þ� �
:

ð22Þ
For the Newtonian fluid of n ¼ 1:0, the above expres-

sion is identical with that suggested by Patterson [16].

Now, the heat transfer rate at the steady state is

scrutinized. The steady Nusselt number is given by

the temperature gradient across the vertical thermal

boundary layer,

Nuss �
L

DT
DT
dT

� ðRaPrn�1Þ1=ð3nþ1Þ

Ar
: ð23Þ

This expression demonstrates that the Nusselt number is

dependent on Pr and n, whereas for a Newtonian fluid

with Pr > 1:0, this value is independent of Pr [2].
All the relevant scales discussed here are summarized

at Table 1. For a Newtonian fluid (n ¼ 1), these scales
Table 1

Compilation of the relevant scales, as in Section 3

Length dT H
�
RaPrn�

dV H Prð2� n

dH H
�
RaPrn�

Velocity vV
j
H

�
RaPrn

vH
k
H

�
RaPrn

Time tB H 2

j
�
RaPrn

tH H 2

j
�
RaPrn

tC H 2

j
�
RaPrn

tD H 2

j
�
RaPrn

tG H 2

j
2p
Si

1þ
R

�

Apparent viscosity m�a
�
RaPr�4=

Nusselt number at steady state Nuss
ðRaPrn�
are reduced to the corresponding expressions stipulated

by P & I [2].
4. Numerical procedure

The numerical solutions of Eqs. (1)–(5) were secured

by employing a finite volume procedure, which is based

on the well-established SIMPLER algorithm [21]. Spa-

tial differencing schemes of second-order accuracy were

selected for the equation terms. A central differencing

was used for the diffusion terms, and the QUICK

scheme [22] was employed to discretize the nonlinear

convection terms. All the boundary conditions were

treated by using the second-order differencing to main-

tain the same accuracy in the whole computation do-

main. To handle the nonlinearity embedded in the

diffusion terms, the apparent viscosity of Eq. (8) was

evaluated at the previous iteration step. Time integra-

tion was performed by using an iterative Eulerian im-

plicit method of accuracy OðDsÞ. Convergence of the

solutions was declared at each time step when the

maximum relative change between two consecutive it-

eration levels fell below 10�4 for U , V and h. A parallel

check was made to ensure that mass continuity in every

computational control volume was satisfied within a

relative error of 10�6.

For the majority of calculations, a staggered grid

with (72� 72) mesh was deployed. Grid stretching was

implemented to resolve thin boundary layers adjacent

to the walls. A very small time step Ds ¼ 10�3t=tB, i.e.,
103 time intervals for the formation time of the vertical

boundary layer, was utilized. To test the grid- and time-

step independence of the solution, two additional

fine meshes with different time steps were used. These
1��1=ð3nþ 1Þ
Þ=nþ 1�RaPrn� 1�2ð2� nÞ=ðnþ 1Þð3nþ 1Þ

1��ð2nþ 1Þ=2ðnþ 1Þð3nþ 1Þ
Ar�1=2ðnþ 1Þ

� 1�2=ð3nþ 1Þ

� 1�ð4nþ 3Þ=2ðnþ 1Þð3nþ 1Þ
Ar1=2ðnþ 1Þ

� 1��2=ð3nþ 1Þ

� 1��ð4nþ 3Þ=2ðnþ 1Þð3nþ 1Þ
Ar�ð2nþ 3Þ=2ðnþ 1Þ

� 1��1=ð3nþ 1Þ

� 1�3ð1� nÞ=ð3nþ 1Þ
Prn� 2

Ar2

aPr

�1=2
3�3ðn� 1Þ=ð3nþ 1Þ

1Þ1=ð3nþ 1Þ
Ar
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Fig. 2. Results of the grid and time-step dependency tests Y ¼ 0:5, t ¼ 1:0tB, n ¼ 0:6, Ra ¼ 107, Pr ¼ 102. (a) Vertical velocity (V );
(b) temperature (h).

Table 2

Comparison with the published results for CNN for a flat plate

Water Carbopol 1 Carbopol 2 Carbopol 3 Carbopol 4

n 1.0 0.475 0.581 0.599 0.807

Pittman et al. (experimental) 0.61 0.49 0.50 0.58 0.64

Dale and Emery (numerical) 0.605 0.45 0.49 0.50 0.57

Tien (numerical) 0.68 0.73 0.72 0.72 0.70

Present 0.59 0.53 0.47 0.58 0.61

Nux ¼ CNNðGrxPrnxÞ
1=ð3nþ2Þ

, q00w ¼ const.
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elaborate test programs demonstrated that variations

between the three representations were very small, which

indicated that the basic mesh of 72� 72 with time-step

Ds ¼ 10�3t=tB was adequate for the present task (see Fig.
2). Also, verification of the present numerical model was

achieved by repeating the calculations of the published

problems [2,5,17]. Table 2 illustrates the exemplary re-

sults for the free convection for a vertical plate with

a constant heat flux. These comprehensive validation

efforts demonstrated that the present methodologies

were robust and accurate.

In the course of computations, the set of Eqs. (1)–(5)

were non-dimensionalized in the following fashion:

s ¼ t
tB
; ðX ; Y Þ ¼ ðx; yÞ

H
; ðU ; V Þ ¼ ðu; vÞ

j=H
;

P ¼ p
q0j2=H

; h ¼ T � T0
DT

: ð24Þ
5. Numerical results and discussion

Results are focused to the case of weakly pseudo-

plastic fluids with 0:66 n6 1:0, such as carboxymethyl-
cellulose (CMC-series) and carboxypolymethylene

(Carbopol-series) [5,10]. The aspect ratio of the enclo-

sure was set Ar ¼ 1:0, and the parameter ranges were

105 6Ra6 107, 102 6 Pr6 104. These parameter values

were chosen to exemplify practical fluids of common use

in technological applications [5].

The Nusselt number at a vertical line, NuX , is defined
as

NuX ¼ 1

Ar

Z 1

0

oh
oX

�
� Uh

�
X

dY : ð25Þ

Fig. 3 is representative of the evolution of NuW (at the

left vertical wall, X ¼ 0) and NuC (at the centerline,

X ¼ 0:5). This demonstrates a decaying oscillatory ap-

proach to the steady state of NuC. Fig. 3(a) is for

Ra ¼ 107, Pr ¼ 102 and n ¼ 0:6, which belongs to the

oscillatory regime classified in the previous chapter. The

transient flow is highly oscillatory at small and interme-

diate times. The oscillations are damped out at moderate

and large times. At early times, there appear high-fre-

quency oscillations in both the NuW and NuC plots. In the
case of NuW, these are due to the passage of the pertur-

bations in the thermal boundary layer. The short-period
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signals in NuC reflect these perturbations travelling across
the horizontal intrusions [18–20]. Afterward, the decay

of the cavity-scale oscillations is discernible. As Ra de-

creases or n increases, the oscillatory behavior is less

pronounced, as shown in Fig. 3(b) and (c). The high-

frequency oscillations are less visible in these cases, and

the oscillatory motions decay comparatively quickly. The

computed periods of oscillation in Fig. 3(a)–(c) are about

5.29� 10�4, 1.82� 10�3 and 6.60� 10�4, respectively.
The theoretical predictions for a Newtonian fluid by

Eq. (18), with Si ¼ 1:0, give the periods, respectively,

8.89� 10�4 for Ra ¼ 106 and 2.81� 10�4 for Ra ¼ 107.

These Newtonian-fluid predictions are slightly smaller

than the computed results of Fig. 3. These discrepan-

cies are believed to be due to the spatially non-uniform

nature of the stratification (0:5 < Si < 1:0) in the

course of computing Eq. (18), particularly in the early

part of the flow development [18]. Another feature

of Fig. 3 is that the settlement to the steady state is

substantially accomplished over the time scale s�C. The
values of s�C marked in Fig. 3 are evaluated by using

Eq. (17).

Fig. 4 exhibits the Nu results pertinent to the flow

regime of monotonic approach to the steady state. The

Nu curves tend to the steady state in a smooth and

heavily damped fashion. Fig. 4(a) exemplifies the

Nu-evolution for the representative Newtonian case

(n ¼ 1:0). Compared to the plots in Fig. 3 for the same

Ra and Pr, the approach to the steady state in this case is
monotonic (see Eq. (20)). The transient process for

lower Ra progresses slowly. The qualitative patterns of

the transient Nu-evolutions are largely unchanged in this
parameter range. As remarked in the previous section

(see Eq. (13)), the lower value of the apparent viscosity

causes the effective Ra to increase, and, therefore, in-

tensified convective activities are seen for low apparent

viscosity. In the case of Fig. 4(d), the criterion, Eq. (20),

is still satisfied. However, the value of Ra is relatively

small so that only weak oscillations are visible. Similar

results for this marginal case for a Newtonian fluid were

reported in the prior work [17]. The plots displayed in

Figs. 3 and 4 point to the fact that the concept of the

apparent viscosity in the vertical thermal boundary layer

can be applied effectively in predicting the presence of

transient internal waves.

The evolutions of the transient flow and temperature

fields for the oscillatory regime are exemplified in Fig. 5.

These figures illustrate sequentially the formation of the

vertical boundary layer, the horizontal intrusion layer

and the approach to the steady state by horizontal lay-

ering. The effect of the power-law index n is discernible
by comparing Fig. 5(a) for n ¼ 0:6 and Fig. 5(b) for

n ¼ 0:8. The transient process for n ¼ 0:6 progresses

faster than for n ¼ 0:8. It is informative to consult the

non-dimensional time s�ð� tH 2=jÞ in the parenthesis.

Also, the vertical thermal boundary layer and the hori-

zontal intrusion layer for n ¼ 0:6 are appreciably thinner
than those for n ¼ 0:8. For n ¼ 0:6, during the hori-

zontal intrusion, the flow diverges (t > tB), and at the

intrusion nose, two distinct streams are visible: one en-

training to the opposite wall across the interior, and the

other forming a counterclockwise eddy in the interior.

As time elapses to the instant of the first arrival of the

intrusion layer at the opposite wall, the eddy formed in

the departing corner has advected toward the far-away
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wall. The weak flow separations from the horizontal

walls between the departing corner and the intrusion

nose are observed (t ¼ 3tH). These are the features par-
adigmatic of high Ra and low Pr [18]. It is worth noting

the distribution of the apparent viscosity m�a (see Eq.

(13a)) plotted in the second column in Fig. 5(a). For a

pseudo-plastic fluid (n < 1:0), the smallest value of the

apparent viscosity is found at the vertical wall (see Eq.

(8)). As shown in the plots of m�a, therefore, m�a in the

localized region of the boundary layers takes a low value

of O(10�2). This means that the effective viscosity of the
fluid is appreciably lower. Consequently, the effective Ra
based on ma, rather than m0 (see Eq. (10b)), in the

boundary layers increases, being over O(108). The

transient flow and temperature evolutions are qualita-

tively similar to the results for a Newtonian fluid for

high Ra (>108) [18]. Fig. 5(a) points to the existence of

the short-period oscillations caused by the traveling

waves across the boundary layers at early times [17–19].

For n ¼ 0:8, the apparent viscosity in the boundary layer
is of the order of O(10�1) (see the second column in Fig.

5(b)). Therefore, the increase of the effective Ra is rela-
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tively small compared with the case of n ¼ 0:6, and the

flow separation has not been achieved during the in-

trusion process. The weak counterclockwise eddy is

formed near the departing corner in the early stage of

intrusion process, but it disappears soon afterward.

Most fluids leaving the departing corners are entrained

into the opposite wall during the intrusion process. For

both cases of n ¼ 0:6 and 0.8, at the instant of heat-up

time scale (t ¼ tC), the layering by intrusion fills the

cavity and the flow becomes substantially horizontal

in the core. These features of Fig. 5 are consistent with

the previous scalings (see Eqs. (9) and (13)–(17)).

In order to check the validity of the previous scalings,

the steady state results are now examined. Fig. 6 exhibits

the profiles of the vertical velocity and temperature at the

horizontal mid plane (Y ¼ 0:5) for Ra ¼ 106. At low
Prandtl number (Pr ¼ 102), the thickness of the bound-

ary layer becomes thinner and the flow is intensified as n
decreases. As Pr increases, the differences in the thick-

ness of the boundary layer and in the flow strength are

decreased (see Fig. 6(b)). For a larger value of Pr, a
boundary layer-type flow character is pronounced in the

Newtonian fluid (n ¼ 1:0) (see Fig. 6(c)). For a moder-

ate Prandtl number (Pr6Oð103Þ for Ra ¼ 106, and

Pr6Oð104Þ for Ra ¼ 107), the power-law index n emer-
ges to be the primary controlling parameter. For an

increased value of Pr, the effect of n becomes meager.

This feature was also reported in the prior study of

Dale and Emery [10] for a flat plate. As pointed out in

the previous studies for high Prandtl number, the boun-

dary layer structure of the Newtonian fluid (n ¼ 1:0)
remains largely unchanged. To the contrary, the results
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of non-Newtonian fluids are dependent on Pr. The lower
value of n causes a steeper change with Pr in the

boundary layer structure. All these features are sup-

portive of the scalings expressed by Eqs. (11b) and (11c).

Next, by compiling the present numerical data, the

variation in the Nusselt number at the steady state,

Nuss, is scrutinized in Fig. 7(a). To investigate the effect

of the power-law index n, the Nusselt number for each
n is normalized by the corresponding value for a

Newtonian fluid (n ¼ 1:0). For a high Ra (see the results
for Ra ¼ 107), the augmentation in the overall heat

transport for a non-Newtonian fluid, in comparison to

the case of a Newtonian fluid, is remarkable [6]. This

trend is pronounced at higher Ra and lower n, as

demonstrated in Fig. 7(a). Similar results were also

observed in the prior studies for a porous cavity satu-

rated with a power-law fluid [12,14]. The effect of Pr is
somewhat more complicated. For a non-Newtonian

fluid of large Pr (e.g., see the results for Pr ¼ 104) and

low Ra (see, e.g., Ra ¼ 105), the Nu-values are less than
those of the Newtonian fluid. This can be explained by

observing the flow character as the apparent viscosity m�a
is altered. As stressed earlier, the apparent viscosity is

flow dependent, and it varies substantially in the cavity.

Therefore, the system-wide Rayleigh number and Pra-

ndtl number in Eqs. (10a) and (10b) alone may not fully

characterize the phenomena. Fig. 7(b) displays the

value of the apparent viscosity m�a at the vertical wall

(Y ¼ 0:5). For a boundary layer-type flow configura-

tion, the vertical boundary layer is an active region that

induces the buoyant flow, and, therefore, the estima-

tion of m�a in this layer is an important task. Fig. 7 re-

veals that the dependency of the Nusselt number on n is
opposite to that of the apparent viscosity m�a. Obvi-
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ously, the effective Ra is inversely proportional to the

apparent viscosity m�a. The effective local Rayleigh

number is a measure to gauge the strength of convec-

tive activities.

Finally, by recasting the present numerical data for

the steady state, the correlation of the Nusselt number

is obtained. The heat transfer rate normalized as in

Eq. (23) is displayed in Fig. 8. It is clear that the

grouping given by Eq. (23) is in broad agreement with

the computed results. This combination of flow vari-

ables was shown to be effective in depicting the heat

transfer enhancement of a non-Newtonian fluid for a

flat plate [3,5,6,10]. Considering the dependency on the

power-index n, the numerical data of the Nusselt
number at the steady state are fitted by curves of the

form

Nuss ¼ 0:3n0:4ðRaPrn�1Þ1=ð3nþ1Þ ð26Þ

for 106 6Ra6 107, 102 6 Pr6 104 and 0:66 n6 1:0 with

a maximum relative error of 6.2%.
6. Concluding remarks

A scaling analysis and comprehensive numerical

calculations have been conducted to delineate the fea-

tures for a purely viscous non-Newtonian power-law
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fluid. The estimations by scaling analysis are shown to

be in qualitative agreement with the present numerical

results.

The concept of the apparent viscosity (or the ap-

parent Prandtl number) of the non-Newtonian fluid,

evaluated in the vertical thermal boundary layer, is a

powerful tool. The temporal behavior of Nu discloses

that the presence of decaying oscillatory motions is an-

ticipated if Ra > Prð6�2nÞ=ð4�3nÞ for a shear-thinning fluid

(n < 1:0). This is in line with the general criterion ob-

tained by the scaling analysis. The period of oscillation
is comparable to the period of internal gravity wave. For

high Ra and moderate Pr, as the power-law index n de-
creases, the convective activity is intensified, and the

overall heat transfer is enhanced. Consequently, the

evolution of flow in the transient process progresses

faster. The rheological property has a significant influ-

ence on both the transient process and the steady state,

and this feature is more pronounced as Ra increases and
Pr decreases.

The correlation of the Nusselt number at the steady

state is proposed.
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